The path-independent M-integral plays an important role in analysis of solids with inhomogeneities. However, the available applications are almost limited to linear-elastic or physically non-linear power law type materials under the assumption of infinitesimal strains. In this paper we formulate the M-integral for a class of hyperelastic solids undergoing finite anti-plane shear deformation. As an application we consider the problem of rigid inclusions embedded in a Mooney–Rivlin matrix material. With the derived M-integral we compute weighted averages of the shear stress acting on the inclusion surface. Furthermore, we prove that a system of rigid inclusions can be replaced by one effective inclusion.

M-integral for finite anti-plane shear of a nonlinear elastic matrix with rigid inclusions

Eremeyev, Victor A.
Primo
;
2024-01-01

Abstract

The path-independent M-integral plays an important role in analysis of solids with inhomogeneities. However, the available applications are almost limited to linear-elastic or physically non-linear power law type materials under the assumption of infinitesimal strains. In this paper we formulate the M-integral for a class of hyperelastic solids undergoing finite anti-plane shear deformation. As an application we consider the problem of rigid inclusions embedded in a Mooney–Rivlin matrix material. With the derived M-integral we compute weighted averages of the shear stress acting on the inclusion surface. Furthermore, we prove that a system of rigid inclusions can be replaced by one effective inclusion.
2024
M-integral; J-integral; Anti-plane shear; Mooney–Rivlin material; Rigid inclusion
l
File in questo prodotto:
File Dimensione Formato  
EremeyevNaumenko_IJES2024.pdf

accesso aperto

Tipologia: versione editoriale (VoR)
Dimensione 792.34 kB
Formato Adobe PDF
792.34 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/388323
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact