Artificial intelligence (AI) is rapidly being applied to the medical field, especially in the cardiovascular domain. AI approaches have demonstrated their applicability in the detection, diagnosis, and management of several cardiovascular diseases, enhancing disease stratification and typing. Cardiomyopathies are a leading cause of heart failure and life-threatening ventricular arrhythmias. Identifying the etiologies is fundamental for the management and diagnostic pathway of these heart muscle diseases, requiring the integration of various data, including personal and family history, clinical examination, electrocardiography, and laboratory investigations, as well as multimodality imaging, making the clinical diagnosis challenging. In this scenario, AI has demonstrated its capability to capture subtle connections from a multitude of multiparametric datasets, enabling the discovery of hidden relationships in data and handling more complex tasks than traditional methods. This review aims to present a comprehensive overview of the main concepts related to AI and its subset. Additionally, we review the existing literature on AI-based models in the differential diagnosis of cardiomyopathy phenotypes, and we finally examine the advantages and limitations of these AI approaches.

Artificial Intelligence in the Differential Diagnosis of Cardiomyopathy Phenotypes

Cau, Riccardo
Primo
;
Montisci, Roberta;Saba, Luca
Ultimo
2024-01-01

Abstract

Artificial intelligence (AI) is rapidly being applied to the medical field, especially in the cardiovascular domain. AI approaches have demonstrated their applicability in the detection, diagnosis, and management of several cardiovascular diseases, enhancing disease stratification and typing. Cardiomyopathies are a leading cause of heart failure and life-threatening ventricular arrhythmias. Identifying the etiologies is fundamental for the management and diagnostic pathway of these heart muscle diseases, requiring the integration of various data, including personal and family history, clinical examination, electrocardiography, and laboratory investigations, as well as multimodality imaging, making the clinical diagnosis challenging. In this scenario, AI has demonstrated its capability to capture subtle connections from a multitude of multiparametric datasets, enabling the discovery of hidden relationships in data and handling more complex tasks than traditional methods. This review aims to present a comprehensive overview of the main concepts related to AI and its subset. Additionally, we review the existing literature on AI-based models in the differential diagnosis of cardiomyopathy phenotypes, and we finally examine the advantages and limitations of these AI approaches.
File in questo prodotto:
File Dimensione Formato  
AI Cardiomyopathy.pdf

accesso aperto

Tipologia: versione editoriale
Dimensione 1.16 MB
Formato Adobe PDF
1.16 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/389085
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact