The determination of surface elastic moduli is discussed in the context of a recently proposed strongly anisotropic surface elasticity model. The aim of the model was to describe deformations of solids with thin elastic coatings associated with so-called hyperbolic metasurfaces. These metasurfaces can exhibit a quite unusual behaviour and concurrently a very promising wave propagation behaviour. In the model of strongly anisotropic surface elasticity, strain energy as a function of the first and second deformation gradients has been introduced in addition to the constitutive relations in the bulk. In order to obtain values of surface elastic moduli, we compare dispersion relations for anti-plane surface waves obtained using the two-dimensional (2D) model and three-dimensional (3D) straightforward calculations for microstructured coatings of finite thickness. We show that with derived effective surface moduli, the 2D model can correctly describe the wave propagation.

On effective surface elastic moduli for microstructured strongly anisotropic coatings

Eremeyev, Victor A.
Primo
;
2024-01-01

Abstract

The determination of surface elastic moduli is discussed in the context of a recently proposed strongly anisotropic surface elasticity model. The aim of the model was to describe deformations of solids with thin elastic coatings associated with so-called hyperbolic metasurfaces. These metasurfaces can exhibit a quite unusual behaviour and concurrently a very promising wave propagation behaviour. In the model of strongly anisotropic surface elasticity, strain energy as a function of the first and second deformation gradients has been introduced in addition to the constitutive relations in the bulk. In order to obtain values of surface elastic moduli, we compare dispersion relations for anti-plane surface waves obtained using the two-dimensional (2D) model and three-dimensional (3D) straightforward calculations for microstructured coatings of finite thickness. We show that with derived effective surface moduli, the 2D model can correctly describe the wave propagation.
2024
Surface elasticity; Effective properties; Dispersion relation; Anti-plane waves; Hyperbolic metasurface
File in questo prodotto:
File Dimensione Formato  
EremeyevRosiNaili_IJES2024.pdf

accesso aperto

Tipologia: versione post-print (AAM)
Dimensione 765.32 kB
Formato Adobe PDF
765.32 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/413043
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact