A highly dense and single phase (Ti0.2Zr0.2Hf0.2Mo0.2W0.2)B2 ceramic product is obtained in this work at 1950°C (20 min, 20 MPa) by Spark Plasma Sintering (SPS) from powders prepared by Self-propagating High-temperature Synthesis (SHS). The formation of the (W,Mo)B2 secondary phase is avoided using fine W precursors and adding 1 wt% graphite to the SHS powders before SPS. Kinetic limitations responsible for hindering the synthesis of the high entropy boride are correspondingly eliminated. The resulting 98.5 % dense sample exhibits a homogeneous microstructure, with Vickers hardness of 26.8 GPa. The introduction of 20 vol% SiC produces an increase of the KIC values from 2.32 to 5.11 MPa m1/2. Very relevant is that the volatilization of Mo- and W-oxides occurring during sample oxidation at high temperature, which leads to its rapid degradation with the formation of a very porous oxide scale, can be strongly inhibited by the silicate phases generated in the composite ceramic.

Processing and characterization of Ultra High Temperature High‐Entropy (Ti0.2Zr0.2Hf0.2Mo0.2W0.2)B2-based Ceramics: Effect of W granulometry, graphite, and SiC addition

Casu M.
Primo
;
Barbarossa S.
Secondo
;
Locci A. M.;Cao G.;Orru' R.
2024-01-01

Abstract

A highly dense and single phase (Ti0.2Zr0.2Hf0.2Mo0.2W0.2)B2 ceramic product is obtained in this work at 1950°C (20 min, 20 MPa) by Spark Plasma Sintering (SPS) from powders prepared by Self-propagating High-temperature Synthesis (SHS). The formation of the (W,Mo)B2 secondary phase is avoided using fine W precursors and adding 1 wt% graphite to the SHS powders before SPS. Kinetic limitations responsible for hindering the synthesis of the high entropy boride are correspondingly eliminated. The resulting 98.5 % dense sample exhibits a homogeneous microstructure, with Vickers hardness of 26.8 GPa. The introduction of 20 vol% SiC produces an increase of the KIC values from 2.32 to 5.11 MPa m1/2. Very relevant is that the volatilization of Mo- and W-oxides occurring during sample oxidation at high temperature, which leads to its rapid degradation with the formation of a very porous oxide scale, can be strongly inhibited by the silicate phases generated in the composite ceramic.
2024
Composites
High-entropy borides
Oxidation
Self-propagating
Spark plasma sintering
High-temperature synthesis
File in questo prodotto:
File Dimensione Formato  
Casu_et_al_JALCOM_2024_compressed.pdf

accesso aperto

Descrizione: Articolo Open Access
Tipologia: versione editoriale (VoR)
Dimensione 1.16 MB
Formato Adobe PDF
1.16 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/414903
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact