Strict-Tolerant Logic (ST) underpins naive theories of truth and vagueness (respectively including a fully disquotational truth predicate and an unrestricted tolerance principle) without jettisoning any classically valid laws. The classical sequent calculus without Cut is sometimes advocated as an appropriate proof-theoretic presentation of ST. Unfortunately, there is only a partial correspondence between its derivability relation and the relation of local metainferential ST-validity - these relations coincide only upon the addition of elimination rules and only within the propositional fragment of the calculus, due to the non-invertibility of the quantifier rules. In this paper, we present two calculi for first-order ST with an eye to recapturing this correspondence in full. The first calculus is close in spirit to the Epsilon calculus. The other calculus includes rules for the discharge of sequent-assumptions; moreover, it is normalisable and admits interpolation.
Sequent Calculi for First-order $$\textrm{ST}$$
Paoli, Francesco
;
2024-01-01
Abstract
Strict-Tolerant Logic (ST) underpins naive theories of truth and vagueness (respectively including a fully disquotational truth predicate and an unrestricted tolerance principle) without jettisoning any classically valid laws. The classical sequent calculus without Cut is sometimes advocated as an appropriate proof-theoretic presentation of ST. Unfortunately, there is only a partial correspondence between its derivability relation and the relation of local metainferential ST-validity - these relations coincide only upon the addition of elimination rules and only within the propositional fragment of the calculus, due to the non-invertibility of the quantifier rules. In this paper, we present two calculi for first-order ST with an eye to recapturing this correspondence in full. The first calculus is close in spirit to the Epsilon calculus. The other calculus includes rules for the discharge of sequent-assumptions; moreover, it is normalisable and admits interpolation.File | Dimensione | Formato | |
---|---|---|---|
Articolo versione stampa.pdf
accesso aperto
Tipologia:
versione editoriale (VoR)
Dimensione
729.62 kB
Formato
Adobe PDF
|
729.62 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.