Let P-lambda Sigma n be the Ehrhart polynomial associated to an integral multiple lambda of the standard simplex Sigma(n) subset of R-n. In this paper, we prove that if (M, L) is an n-dimensional polarized toric manifold with associated Delzant polytope Delta and Ehrhart polynomial P-Delta such that P-Delta = P-lambda Sigma n, for some lambda is an element of Z(+), then (M, L) congruent to (CPn, O(lambda)) (where O (1) is the hyperplane bundle on CPn) in the following three cases: (1) arbitrary n and lambda = 1, (2) n = 2 and lambda = 3 and (3) lambda = n + 1 under the assumption that the polarization L is asymptotically Chow semistable.

Some characterizations of the complex projective space via Ehrhart polynomials

Loi, Andrea
;
Zuddas, Fabio
2024-01-01

Abstract

Let P-lambda Sigma n be the Ehrhart polynomial associated to an integral multiple lambda of the standard simplex Sigma(n) subset of R-n. In this paper, we prove that if (M, L) is an n-dimensional polarized toric manifold with associated Delzant polytope Delta and Ehrhart polynomial P-Delta such that P-Delta = P-lambda Sigma n, for some lambda is an element of Z(+), then (M, L) congruent to (CPn, O(lambda)) (where O (1) is the hyperplane bundle on CPn) in the following three cases: (1) arbitrary n and lambda = 1, (2) n = 2 and lambda = 3 and (3) lambda = n + 1 under the assumption that the polarization L is asymptotically Chow semistable.
2024
Polarized manifold
toric manifolds
Delzant polytope
asymptotically Chow semistability
cscK metric
regular quantization
File in questo prodotto:
File Dimensione Formato  
S0129167X23501082.pdf

Solo gestori archivio

Descrizione: VoR
Tipologia: versione editoriale (VoR)
Dimensione 295.41 kB
Formato Adobe PDF
295.41 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
CharprojXIRIS_merged.pdf

embargo fino al 01/02/2025

Descrizione: AAM
Tipologia: versione post-print (AAM)
Dimensione 496.7 kB
Formato Adobe PDF
496.7 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/417243
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact