Let u be a non-negative super-solution to a 1-dimensional singular parabolic equation of p-Laplacian type (1 < p < 2). If u is bounded below on a time-segment {y} x (0, T] by a positive number M, then it has a power like decay of order 2 Pp with respect to the space variable x in R x [T/2, T]. This fact, stated quantitatively in Proposition 1.2, is a "sidewise spreading of positivity" of solutions to such singular equations, and can be considered as a form of Harnack inequality. The proof of such an effect is based on geometrical ideas.

$1$-dimensional Harnack estimates

Düzgün, Fatma Gamze;Vespri, Vincenzo
2016-01-01

Abstract

Let u be a non-negative super-solution to a 1-dimensional singular parabolic equation of p-Laplacian type (1 < p < 2). If u is bounded below on a time-segment {y} x (0, T] by a positive number M, then it has a power like decay of order 2 Pp with respect to the space variable x in R x [T/2, T]. This fact, stated quantitatively in Proposition 1.2, is a "sidewise spreading of positivity" of solutions to such singular equations, and can be considered as a form of Harnack inequality. The proof of such an effect is based on geometrical ideas.
2016
Singular diffusion equations
p-laplacian
expansion of positivity
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/423203
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact