In this work, the development of a flexible Double-Gate (DG) organic thin film transistor (DG-OTFT), and its employment is reported for the realization of multimodal tactile sensors. Due to the self-encapsulation of the stacked DG architecture, highly stable organic transistors are obtained that show almost negligible degradation after 6 months. Moreover, such configuration is also very useful for the development of sensing devices. In the case, one of the two gates is used to bias and set the working point of the devices, whereas the second one is connected to a polyvinylidene fluoride(PVDF)-capacitor, a pyro/piezoelectric material. It is demonstrated that the charge displacement induced by the PVDF capacitor due to an applied external pressure or due to a temperature variation led to a reproducible variation of the device's output current. Using this approach high-performing multimodal tactile sensors are obtained with sensitivity to up to 241 nA N-1 and 442 nA degrees C-1 respectively.Here, a flexible Double-Gate (DG) organic thin film transistor (DG-OTFT) and its employment as multimodal tactile sensors are reported. Due to its self-encapsulation given by the stacked DG architecture, the organic transistors present highly stable performances with almost negligible degradation after 6 months. Moreover, such configuration allows the development of a highly sensitive tactile sensor for artificial skin applications. image
Fabrication of Flexible Double-Gate Organic Thin Film Transistor For Tactile Applications
Concas M.Primo
Membro del Collaboration Group
;Mascia A.Secondo
Membro del Collaboration Group
;Lai S.Membro del Collaboration Group
;Cosseddu P.Ultimo
Supervision
2024-01-01
Abstract
In this work, the development of a flexible Double-Gate (DG) organic thin film transistor (DG-OTFT), and its employment is reported for the realization of multimodal tactile sensors. Due to the self-encapsulation of the stacked DG architecture, highly stable organic transistors are obtained that show almost negligible degradation after 6 months. Moreover, such configuration is also very useful for the development of sensing devices. In the case, one of the two gates is used to bias and set the working point of the devices, whereas the second one is connected to a polyvinylidene fluoride(PVDF)-capacitor, a pyro/piezoelectric material. It is demonstrated that the charge displacement induced by the PVDF capacitor due to an applied external pressure or due to a temperature variation led to a reproducible variation of the device's output current. Using this approach high-performing multimodal tactile sensors are obtained with sensitivity to up to 241 nA N-1 and 442 nA degrees C-1 respectively.Here, a flexible Double-Gate (DG) organic thin film transistor (DG-OTFT) and its employment as multimodal tactile sensors are reported. Due to its self-encapsulation given by the stacked DG architecture, the organic transistors present highly stable performances with almost negligible degradation after 6 months. Moreover, such configuration allows the development of a highly sensitive tactile sensor for artificial skin applications. imageFile | Dimensione | Formato | |
---|---|---|---|
A80_Double‐Gate OTFT_Tactile_AdvMaterTechn.pdf
accesso aperto
Tipologia:
versione editoriale (VoR)
Dimensione
5.1 MB
Formato
Adobe PDF
|
5.1 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.