In this paper we deal with the Cauchy problem associated to a class of quasilinear singular parabolic equations with L-infinity coefficients, whose prototypes are the p-Laplacian (2N/N+1 < p < 2) and the Porous medium equation ((N-2/N)(+) < m < 1). In this range of the parameters p and m, we are in the so called fast diffusion case. We prove that the initial mass is preserved for all the times.

Conservation of the mass for solutions to a class of singular parabolic equations

Duzgun, Fatma Gamze;Vespri, Vincenzo
2014-01-01

Abstract

In this paper we deal with the Cauchy problem associated to a class of quasilinear singular parabolic equations with L-infinity coefficients, whose prototypes are the p-Laplacian (2N/N+1 < p < 2) and the Porous medium equation ((N-2/N)(+) < m < 1). In this range of the parameters p and m, we are in the so called fast diffusion case. We prove that the initial mass is preserved for all the times.
2014
Singular Parabolic Equations
Cauchy problem
Conservation of the L-1 norm
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/425464
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact