Online platforms have become the primary means for travellers to search, compare, and book accommodations for their trips. Consequently, online platforms and revenue managers must acquire a comprehensive comprehension of these dynamics to formulate a competitive and appealing offerings. Recent advancements in natural language processing, specifically through the development of large language models, have demonstrated significant progress in capturing the intricate nuances of human language. On the other hand, knowledge graphs have emerged as potent instruments for representing and organizing structured information. Nevertheless, effectively integrating these two powerful technologies remains an ongoing challenge. This paper presents an innovative deep learning methodology that combines large language models with domain-specific knowledge graphs for classification of tourism offers. The main objective of our system is to assist revenue managers in the following two fundamental dimensions: (i) comprehending the market positioning of their accommodation offerings, taking into consideration factors such as accommodation price and availability, together with user reviews and demand, and (ii) optimizing presentations and characteristics of the offerings themselves, with the intention of improving their overall appeal. For this purpose, we developed a domain knowledge graph covering a variety of information about accommodations and implemented targeted feature engineering techniques to enhance the information representation within a large language model. To evaluate the effectiveness of our approach, we conducted a comparative analysis against alternative methods on four datasets about accommodation offers in London. The proposed solution obtained excellent results, significantly outperforming alternative methods.

Optimizing Tourism Accommodation Offers by Integrating Language Models and Knowledge Graph Technologies

De Leo V.;Reforgiato Recupero D.
;
Secchi L.
2024-01-01

Abstract

Online platforms have become the primary means for travellers to search, compare, and book accommodations for their trips. Consequently, online platforms and revenue managers must acquire a comprehensive comprehension of these dynamics to formulate a competitive and appealing offerings. Recent advancements in natural language processing, specifically through the development of large language models, have demonstrated significant progress in capturing the intricate nuances of human language. On the other hand, knowledge graphs have emerged as potent instruments for representing and organizing structured information. Nevertheless, effectively integrating these two powerful technologies remains an ongoing challenge. This paper presents an innovative deep learning methodology that combines large language models with domain-specific knowledge graphs for classification of tourism offers. The main objective of our system is to assist revenue managers in the following two fundamental dimensions: (i) comprehending the market positioning of their accommodation offerings, taking into consideration factors such as accommodation price and availability, together with user reviews and demand, and (ii) optimizing presentations and characteristics of the offerings themselves, with the intention of improving their overall appeal. For this purpose, we developed a domain knowledge graph covering a variety of information about accommodations and implemented targeted feature engineering techniques to enhance the information representation within a large language model. To evaluate the effectiveness of our approach, we conducted a comparative analysis against alternative methods on four datasets about accommodation offers in London. The proposed solution obtained excellent results, significantly outperforming alternative methods.
2024
knowledge graphs; natural language processing; BERT; classification tasks; feature engineering; tourism; hospitality
File in questo prodotto:
File Dimensione Formato  
information-15-00398.pdf

accesso aperto

Tipologia: versione editoriale (VoR)
Dimensione 1.5 MB
Formato Adobe PDF
1.5 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/426188
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact