Three-dimensional (3D) applications lead the digital transition toward more immersive and interactive multimedia technologies. Point clouds (PCs) are a fundamental element in capturing and rendering 3D digital environments, but they present significant challenges due to the large amount of data typically needed to represent them. Although PC compression techniques can reduce the size of PCs, they introduce degradations that can negatively impact the PC’s quality and therefore the object representation’s accuracy. This trade-off between data size and PC quality highlights the critical importance of PC quality assessment (PCQA) techniques. In this article, we review the state-of-the-art no-reference (NR) objective quality metrics for PCs, which can accurately estimate the quality of generated and compressed PCs solely based on feature information extracted from the distorted PC. These characteristics make NR PCQA metrics particularly suitable in real-world application scenarios where the original PC data are unavailable for comparison, such as in streaming applications.

No-Reference Objective Quality Metrics for 3D Point Clouds: A Review

Porcu, Simone;Marche, Claudio;Floris, Alessandro
2024-01-01

Abstract

Three-dimensional (3D) applications lead the digital transition toward more immersive and interactive multimedia technologies. Point clouds (PCs) are a fundamental element in capturing and rendering 3D digital environments, but they present significant challenges due to the large amount of data typically needed to represent them. Although PC compression techniques can reduce the size of PCs, they introduce degradations that can negatively impact the PC’s quality and therefore the object representation’s accuracy. This trade-off between data size and PC quality highlights the critical importance of PC quality assessment (PCQA) techniques. In this article, we review the state-of-the-art no-reference (NR) objective quality metrics for PCs, which can accurately estimate the quality of generated and compressed PCs solely based on feature information extracted from the distorted PC. These characteristics make NR PCQA metrics particularly suitable in real-world application scenarios where the original PC data are unavailable for comparison, such as in streaming applications.
2024
3D
model-based metric
no-reference metric
objective quality evaluation
point cloud
projection-based metric
quality of experience
File in questo prodotto:
File Dimensione Formato  
2024-11 Sensors - Review NR PCQA models.pdf

accesso aperto

Descrizione: VoR
Tipologia: versione editoriale (VoR)
Dimensione 2.66 MB
Formato Adobe PDF
2.66 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/430245
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact