Nanofluids, which consist of nanosized particles dispersed in a base fluid, represent a promising solution to improve the performance of thermal energy storage systems. This review offers a comprehensive overview of nanofluids and their applications in thermal energy storage systems, discussing their thermal properties, heat transfer mechanisms, synthesis techniques, and application in latent heat storage systems. Various types of nanofluids are examined, including metal oxide, carbon-based, and metallic nanofluids, highlighting their effects on thermal conductivity, latent heat and the phase change temperature. A review of experimental and numerical studies showcases the performance of thermal energy storage systems incorporating nanofluids and the factors influencing their thermophysical characteristics and energy storage capacity. Finally, the key findings of current research are summarized, as well as the challenges and the potential future directions in nanofluid-based thermal energy storage systems research, emphasizing the need to optimize nanoparticle concentration and long-term durability.

Nanofluids in Thermal Energy Storage Systems: A Comprehensive Review

Peer, Mohamed Shameer
Primo
;
Cascetta, Mario
Secondo
;
Migliari, Luca
Penultimo
;
Petrollese, Mario
Ultimo
2025-01-01

Abstract

Nanofluids, which consist of nanosized particles dispersed in a base fluid, represent a promising solution to improve the performance of thermal energy storage systems. This review offers a comprehensive overview of nanofluids and their applications in thermal energy storage systems, discussing their thermal properties, heat transfer mechanisms, synthesis techniques, and application in latent heat storage systems. Various types of nanofluids are examined, including metal oxide, carbon-based, and metallic nanofluids, highlighting their effects on thermal conductivity, latent heat and the phase change temperature. A review of experimental and numerical studies showcases the performance of thermal energy storage systems incorporating nanofluids and the factors influencing their thermophysical characteristics and energy storage capacity. Finally, the key findings of current research are summarized, as well as the challenges and the potential future directions in nanofluid-based thermal energy storage systems research, emphasizing the need to optimize nanoparticle concentration and long-term durability.
2025
Heat transfer; Nanofluids; Nanoparticles; Phase change material; Thermal energy storage
File in questo prodotto:
File Dimensione Formato  
energies-18-00707-v2.pdf

accesso aperto

Descrizione: Manuscript
Tipologia: versione editoriale (VoR)
Dimensione 4.26 MB
Formato Adobe PDF
4.26 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/438405
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact