Cancer remains the second leading cause of death globally, driving the need for innovative therapies. Among natural compounds, maytansinoids have shown significant promise, contributing to nearly 25% of recently approved anticancer drugs. Despite their potential, early clinical trials faced challenges due to severe side effects, prompting advancements in delivery systems such as antibody-maytansinoid conjugates (AMCs). This review highlights the anticancer activity of maytansinoids, with a focus on AMCs designed to target cancer cells specifically. Preclinical and clinical studies show that AMCs, including FDA-approved drugs like Kadcyla and Elahere, effectively inhibit tumor growth while reducing systemic toxicity. Key developments include improved synthesis methods, linker chemistry and payload design. Ongoing research aims to enhance the safety and efficacy of AMCs, integrate nanotechnology for drug delivery, and identify novel therapeutic targets. These advancements hold potential to transform maytansinoid-based cancer treatments in the future.

Maytansinoids in cancer therapy: advancements in antibody–drug conjugates and nanotechnology-enhanced drug delivery systems

Matteo Perra;Ines Castangia;Matteo Aroffu;Federica Fulgheri;Rita Abi-Rached;Maria Letizia Manca;
2025-01-01

Abstract

Cancer remains the second leading cause of death globally, driving the need for innovative therapies. Among natural compounds, maytansinoids have shown significant promise, contributing to nearly 25% of recently approved anticancer drugs. Despite their potential, early clinical trials faced challenges due to severe side effects, prompting advancements in delivery systems such as antibody-maytansinoid conjugates (AMCs). This review highlights the anticancer activity of maytansinoids, with a focus on AMCs designed to target cancer cells specifically. Preclinical and clinical studies show that AMCs, including FDA-approved drugs like Kadcyla and Elahere, effectively inhibit tumor growth while reducing systemic toxicity. Key developments include improved synthesis methods, linker chemistry and payload design. Ongoing research aims to enhance the safety and efficacy of AMCs, integrate nanotechnology for drug delivery, and identify novel therapeutic targets. These advancements hold potential to transform maytansinoid-based cancer treatments in the future.
2025
Antibody-maytansinoid conjugates; Anticancer studies; Maytansine; Maytansinoid-based therapies; Microtubules polymerization inhibitors; Natural compounds
File in questo prodotto:
File Dimensione Formato  
Maytansinoids in cancer therapy: advancements in antibody–drug conjugates and nanotechnology‑enhanced drug delivery systems.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: versione editoriale (VoR)
Dimensione 1.83 MB
Formato Adobe PDF
1.83 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/447077
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact