To address the challenges of optimizing cable-stayed bridges under seismic loading, a multi-objective particle swarm optimization (PSO) procedure to optimize load-bearing components of cable-stayed bridges is presented. The procedure integrates numerical computing software MATLAB with finite element analysis software ANSYS. The final goal is to identify the optimal cross-sectional dimensions of towers and girders, as well as the optimal cross-sectional areas of cables and their corresponding pre-tension forces. The goal is achieved by coupling the PSO for global searching, time history analysis or spectrum analysis for dynamic evaluation, and the influence matrix method for determining the cable pre-tension forces. The effectiveness of proposed procedure is validated through a two dimensional (2D) and a three dimensional (3D) symmetric layout bridge. Following that, the design procedure is utilized in the preliminary design of a single tower bridge without backstays located in Pescara, Italy. The results demonstrate that the proposed optimization procedure could be an useful tool to optimize cable-stay bridges under seismic loading.

Optimum seismic design of cable-stayed bridges based on multi-objective particle swarm optimization

Fenu, Luigi;
2025-01-01

Abstract

To address the challenges of optimizing cable-stayed bridges under seismic loading, a multi-objective particle swarm optimization (PSO) procedure to optimize load-bearing components of cable-stayed bridges is presented. The procedure integrates numerical computing software MATLAB with finite element analysis software ANSYS. The final goal is to identify the optimal cross-sectional dimensions of towers and girders, as well as the optimal cross-sectional areas of cables and their corresponding pre-tension forces. The goal is achieved by coupling the PSO for global searching, time history analysis or spectrum analysis for dynamic evaluation, and the influence matrix method for determining the cable pre-tension forces. The effectiveness of proposed procedure is validated through a two dimensional (2D) and a three dimensional (3D) symmetric layout bridge. Following that, the design procedure is utilized in the preliminary design of a single tower bridge without backstays located in Pescara, Italy. The results demonstrate that the proposed optimization procedure could be an useful tool to optimize cable-stay bridges under seismic loading.
2025
Cross-sectional area; Multi-objective; Particle swarm optimization; Pre-tension forces; Seismic load
File in questo prodotto:
File Dimensione Formato  
s10518-025-02198-7.pdf

Solo gestori archivio

Tipologia: versione editoriale (VoR)
Dimensione 4.31 MB
Formato Adobe PDF
4.31 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Post-print-Opt.Seism.Des.Cable-Stayed Bridges..._Bull.Eartq.Eng. 2025.pdf

embargo fino al 17/06/2026

Tipologia: versione post-print (AAM)
Dimensione 4.58 MB
Formato Adobe PDF
4.58 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/449866
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact