We study the convergence of the nonlinear Krasnoselskij iteration x(k + 1) = (1 − θ)x(k) + θT(x(k)) in real vector spaces of finite dimension equipped with a p-norm, which is relevant for stability analysis and distributed computation in several discrete-time dynamical systems. Specifically, we provide sufficient conditions for the convergence of the Krasnoselskij iteration, derived via implications between the strict pseudocontractivity of the operator T and the nonexpansiveness of (1 − θ)Id + θT. Interestingly, it turns out that strict pseudocontractivity of T is necessary for the Euclidean norm (p = 2) only; not necessary for non-Euclidean norms (p ≠ 2); sufficient for any finite norm p ∈ (1, ∞); not sufficient for the taxi-cab norm (p = 1) and the supremum norm (p = ∞). We numerically verify the above results in the context of recurrent neural networks and multi-agent systems with nonlinear Laplacian dynamics.

On the convergence of the Krasnoselskij iteration for strictly pseudocontractive operators

Deplano, Diego
Primo
;
Grammatico, Sergio
Penultimo
;
Franceschelli, Mauro
Ultimo
2025-01-01

Abstract

We study the convergence of the nonlinear Krasnoselskij iteration x(k + 1) = (1 − θ)x(k) + θT(x(k)) in real vector spaces of finite dimension equipped with a p-norm, which is relevant for stability analysis and distributed computation in several discrete-time dynamical systems. Specifically, we provide sufficient conditions for the convergence of the Krasnoselskij iteration, derived via implications between the strict pseudocontractivity of the operator T and the nonexpansiveness of (1 − θ)Id + θT. Interestingly, it turns out that strict pseudocontractivity of T is necessary for the Euclidean norm (p = 2) only; not necessary for non-Euclidean norms (p ≠ 2); sufficient for any finite norm p ∈ (1, ∞); not sufficient for the taxi-cab norm (p = 1) and the supremum norm (p = ∞). We numerically verify the above results in the context of recurrent neural networks and multi-agent systems with nonlinear Laplacian dynamics.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/457486
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact