This paper presents a neural network system for the diagnosis of analog circuits and shows how the performance of such a system can be affected by the choice of different techniques used by its submodules. In particular we discuss the influence of feature extraction techniques such as Fourier Transforms, Wavelets and Principal Component Analysis. The system uses several different power supplies and as many neural networks "in parallel". Two different algorithms that can be used to combine the candidate sets produced by each network are also presented. The system is capable of diagnosing multiple faults even if trained on single ones.

A neural network diagnosis approach for analog circuits

FANNI, ALESSANDRA;GIUA, ALESSANDRO;MARCHESI, MICHELE;MONTISCI, AUGUSTO
1999

Abstract

This paper presents a neural network system for the diagnosis of analog circuits and shows how the performance of such a system can be affected by the choice of different techniques used by its submodules. In particular we discuss the influence of feature extraction techniques such as Fourier Transforms, Wavelets and Principal Component Analysis. The system uses several different power supplies and as many neural networks "in parallel". Two different algorithms that can be used to combine the candidate sets produced by each network are also presented. The system is capable of diagnosing multiple faults even if trained on single ones.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11584/91138
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 24
social impact