In this paper, a new approach for time series forecasting is presented. The forecasting activity results from the interaction of a population of experts, each integrating genetic and neural technologies. An expert of this kind embodies a genetic classifier designed to control the activation of a feedforward artificial neural network for performing a locally scoped forecasting activity. Genetic and neural components are supplied with different information: The former deal with inputs encoding information retrieved from technical analysis, whereas the latter process other relevant inputs, in particular past stock prices. To investigate the performance of the proposed approach in response to real data, a stock market forecasting system has been implemented and tested on two stock market indexes, allowing for account realistic trading commissions. The results pointed to the good forecasting capability of the approach, which repeatedly outperformed the “Buy and Hold” strategy.

A Hybrid Genetic-Neural Architecture for Stock Indexes Forecasting

ARMANO, GIULIANO;MARCHESI, MICHELE;
2005-01-01

Abstract

In this paper, a new approach for time series forecasting is presented. The forecasting activity results from the interaction of a population of experts, each integrating genetic and neural technologies. An expert of this kind embodies a genetic classifier designed to control the activation of a feedforward artificial neural network for performing a locally scoped forecasting activity. Genetic and neural components are supplied with different information: The former deal with inputs encoding information retrieved from technical analysis, whereas the latter process other relevant inputs, in particular past stock prices. To investigate the performance of the proposed approach in response to real data, a stock market forecasting system has been implemented and tested on two stock market indexes, allowing for account realistic trading commissions. The results pointed to the good forecasting capability of the approach, which repeatedly outperformed the “Buy and Hold” strategy.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/91342
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 236
  • ???jsp.display-item.citation.isi??? 184
social impact