The main contribution of this paper is an algorithm to solve an extended version of the quantized consensus problem over networks represented by Hamiltonian graphs, i.e., graphs containing a Hamiltonian cycle, which we assume to be known in advance. Given a network of agents, we assume that a certain number of tokens should be assigned to the agents, so that the total number of tokens weighted by their sizes is the same for all the agents. The algorithm is proved to converge almost surely to a finite set containing the optimal solution. A worst case study of the expected convergence time is carried out, thus proving the efficiency of the algorithm with respect to other solutions recently presented in the literature. Moreover, the algorithm has a decentralized stop criterion once the convergence set is reached.

Quantized consensus in Hamiltonian graphs

FRANCESCHELLI, MAURO;GIUA, ALESSANDRO;SEATZU, CARLA
2011-01-01

Abstract

The main contribution of this paper is an algorithm to solve an extended version of the quantized consensus problem over networks represented by Hamiltonian graphs, i.e., graphs containing a Hamiltonian cycle, which we assume to be known in advance. Given a network of agents, we assume that a certain number of tokens should be assigned to the agents, so that the total number of tokens weighted by their sizes is the same for all the agents. The algorithm is proved to converge almost surely to a finite set containing the optimal solution. A worst case study of the expected convergence time is carried out, thus proving the efficiency of the algorithm with respect to other solutions recently presented in the literature. Moreover, the algorithm has a decentralized stop criterion once the convergence set is reached.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/94237
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 15
social impact