Recently three groups of rifampicin (RIF)-loaded microparticles (MPs), consisting of chitosan (CHT), PLGA and PLGA/CHT mixtures, were assessed in terms of RIF-loading and retention during nebulisation. The CHT-coated PLGA MPs were found to exhibit high RIF-loading ability together with nebulisation ability, stability, and mucoadhesive properties. All MP types had comparable toxicity towards alveolar cells which was significantly lower than that of the free drug. Herein, we study the release of RIF from all MP-types, during incubation in buffer with pH values: 4.40 and 7.40. Results show that CHT particles exhibit a higher burst release compared to PLGA MPs; at pH 4.40, which is explained by the higher solubility of CHT in acidic media. At pH 7.40 burst release from CHT MP's is significantly lower when CHT is crosslinked with glutaraldehyde, which is consistent with their - previously observed - increased stability during nebulization. From PLGA MPs, RIF release was pH independent under the conditions applied, while the amount of PVA (stabilizer) considerably affected drug release. When PLGA MP's were coated with CHT, at pH 7.40 the retention of RIF increased further (compared to non-coated MPs), while at pH 4.40 the release was faster from the CHT-coated particles. Concluding, it is proven that when PLGA MPs are coated with CHT, in addition to increased particle mucoadhesive properties, the release kinetics of RIF are modified. (C) 2008 Elsevier B.V. All rights reserved.
Release of rifampicin from chitosan, PLGA and chitosan-coated PLGA microparticles
MANCA, MARIA LETIZIA;FADDA, ANNA MARIA;
2008-01-01
Abstract
Recently three groups of rifampicin (RIF)-loaded microparticles (MPs), consisting of chitosan (CHT), PLGA and PLGA/CHT mixtures, were assessed in terms of RIF-loading and retention during nebulisation. The CHT-coated PLGA MPs were found to exhibit high RIF-loading ability together with nebulisation ability, stability, and mucoadhesive properties. All MP types had comparable toxicity towards alveolar cells which was significantly lower than that of the free drug. Herein, we study the release of RIF from all MP-types, during incubation in buffer with pH values: 4.40 and 7.40. Results show that CHT particles exhibit a higher burst release compared to PLGA MPs; at pH 4.40, which is explained by the higher solubility of CHT in acidic media. At pH 7.40 burst release from CHT MP's is significantly lower when CHT is crosslinked with glutaraldehyde, which is consistent with their - previously observed - increased stability during nebulization. From PLGA MPs, RIF release was pH independent under the conditions applied, while the amount of PVA (stabilizer) considerably affected drug release. When PLGA MP's were coated with CHT, at pH 7.40 the retention of RIF increased further (compared to non-coated MPs), while at pH 4.40 the release was faster from the CHT-coated particles. Concluding, it is proven that when PLGA MPs are coated with CHT, in addition to increased particle mucoadhesive properties, the release kinetics of RIF are modified. (C) 2008 Elsevier B.V. All rights reserved.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.