Let \Omega \subsetR^N be a bounded smooth domain. We investigate the effect of the mean curvature of the boundary \partial \Omega on the behaviour of the solution to the homogeneous Dirichlet boundary value problem for the equation \Delta u + f(u) = 0. Under appropriate growth conditions on f(t) as t approaches zero, we find asymptotic expansions up to the second order of the solution in terms of the distance from x to the boundary \partial \Omega.

Second-order boundary estimates for solutions to singular elliptic equations in borderline cases

Anedda Claudia;
2011-01-01

Abstract

Let \Omega \subsetR^N be a bounded smooth domain. We investigate the effect of the mean curvature of the boundary \partial \Omega on the behaviour of the solution to the homogeneous Dirichlet boundary value problem for the equation \Delta u + f(u) = 0. Under appropriate growth conditions on f(t) as t approaches zero, we find asymptotic expansions up to the second order of the solution in terms of the distance from x to the boundary \partial \Omega.
File in questo prodotto:
File Dimensione Formato  
Anedda - Porru.pdf

accesso aperto

Tipologia: versione editoriale
Dimensione 276.47 kB
Formato Adobe PDF
276.47 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/96806
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 1
social impact