Pistacia lentiscus berry oil (LBO) represents a typical vegetal product of the Mediterranean basin that has been formally used in traditional cuisine for 100s of years. In addition to its interesting alimentary properties, this product could represent an interesting candidate in the field of research on the study of new anti-infective agents. In fact, in Mediterranean countries, lentisk oil still continues to be widely used in folk medicine for oral and skin affections, in particular, acute gingivitis, pediatric skin infections such as impetigo and foot plaques, and biofilm related infections often associated with Streptococcus spp. Following these observations, we have hypothesized a “lentisk oil-bacteria” interaction, placing particular emphasis on the different Streptococcal species involved in these oral and skin diseases. In accordance with this hypothesis, the use of standard antimicrobial-antibiofilm methods (MIC, MBC, MBIC) allowed the interesting behavior of these bacteria to be observed and, in this context, the response to lentisk oil appears to be correlated with the pathogenic profile of the considered microorganism. Two probiotic strains of S. salivarius K12/M18 appeared to be non-sensitive to this product, while a set of five different pathogenic strains (S. agalactiae, S. intermedius, S. mitis, S. mutans, S. pyogenes) showed a response that was correlated to the fatty acid metabolic pathway of the considered species. In fact, at different times of bacteria development, selective High Performance Liquid Chromatography analysis of the growth medium containing LBO detected a significant increase in free unsaturated fatty acids (UFAs) in particular oleic, palmitic and linoleic acids, which are already known for their antibacterial activity. In this context, we have hypothesized that LBO could be able to modulate the pathogen/probiotic rate in a Streptococcal population using the fatty acid metabolic pathway to help the probiotic strain. This hypothesis was strengthened by performing antibacterial testing with oleic acid and an in silico evaluation of the Streptococcal MCRA protein, an enzyme involved in the production of saturated fatty acids from UFA. These results show that LBO may have been used in ancient times as a “natural microbial modulating extract” in the prevention of biofilm- associated diseases.

The Selective Interaction of Pistacia lentiscus Oil vs. Human Streptococci, an Old Functional Food Revisited with New Tools

ORRU, GERMANO;TUVERI, ENRICA;CONI, PIERPAOLO;PICHIRI, GIUSEPPINA;ROSA, ANTONELLA;
2017-01-01

Abstract

Pistacia lentiscus berry oil (LBO) represents a typical vegetal product of the Mediterranean basin that has been formally used in traditional cuisine for 100s of years. In addition to its interesting alimentary properties, this product could represent an interesting candidate in the field of research on the study of new anti-infective agents. In fact, in Mediterranean countries, lentisk oil still continues to be widely used in folk medicine for oral and skin affections, in particular, acute gingivitis, pediatric skin infections such as impetigo and foot plaques, and biofilm related infections often associated with Streptococcus spp. Following these observations, we have hypothesized a “lentisk oil-bacteria” interaction, placing particular emphasis on the different Streptococcal species involved in these oral and skin diseases. In accordance with this hypothesis, the use of standard antimicrobial-antibiofilm methods (MIC, MBC, MBIC) allowed the interesting behavior of these bacteria to be observed and, in this context, the response to lentisk oil appears to be correlated with the pathogenic profile of the considered microorganism. Two probiotic strains of S. salivarius K12/M18 appeared to be non-sensitive to this product, while a set of five different pathogenic strains (S. agalactiae, S. intermedius, S. mitis, S. mutans, S. pyogenes) showed a response that was correlated to the fatty acid metabolic pathway of the considered species. In fact, at different times of bacteria development, selective High Performance Liquid Chromatography analysis of the growth medium containing LBO detected a significant increase in free unsaturated fatty acids (UFAs) in particular oleic, palmitic and linoleic acids, which are already known for their antibacterial activity. In this context, we have hypothesized that LBO could be able to modulate the pathogen/probiotic rate in a Streptococcal population using the fatty acid metabolic pathway to help the probiotic strain. This hypothesis was strengthened by performing antibacterial testing with oleic acid and an in silico evaluation of the Streptococcal MCRA protein, an enzyme involved in the production of saturated fatty acids from UFA. These results show that LBO may have been used in ancient times as a “natural microbial modulating extract” in the prevention of biofilm- associated diseases.
2017
Streptococcus spp., Pistacia lentiscus oil, natural antimicrobials, free fatty acids, biofilm inhibition
File in questo prodotto:
File Dimensione Formato  
Orrù (Frontiers) 2017.pdf

accesso aperto

Tipologia: versione editoriale
Dimensione 1.69 MB
Formato Adobe PDF
1.69 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/226187
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 20
social impact