The emerging role of the diet in the incidence of intestinal inflammatory diseases has stimulated research on the influence of eating habits with pro-inflammatory properties in inducing epithelial barrier disturbance. Cholesterol oxidation products, namely oxysterols, have been shown to promote and sustain oxidative/inflammatory reactions in human digestive tract. This work investigated in an in vitro model the potential ability of a combination of dietary oxysterols representative of a hyper-cholesterol diet to induce the loss of intestinal epithelial layer integrity. The components of the experimental mixture were the main oxysterols stemming from heat-induced cholesterol auto-oxidation, namely 7-ketocholesterol, 5α,6α-and 5β,6β-epoxycholesterol, 7α- and 7β-hydroxycholesterol. These compounds added to monolayers of differentiated CaCo-2 cells in combination or singularly, caused a time-dependent induction of matrix metalloproteinases (MMP)-2 and -9, also known as gelatinases. The hyperactivation of MMP-2 and -9 was found to be associated with decreased levels of the tight junctions zonula occludens-1 (ZO-1), occludin and Junction Adhesion Molecule-A (JAM-A). Together with such a protein loss, particularly evident for ZO-1, a net perturbation of spatial localization of the three tight junctions was observed. Cell monolayer pre-treatment with the selective inhibitor of MMPs ARP100 or polyphenol (-)-epicathechin, previously shown to inhibit NADPH oxidase in the same model system, demonstrated that the decrease of the three tight junction proteins was mainly a consequence of MMPs induction, which was in turn dependent on the pro-oxidant property of the oxysterols investigated. Although further investigation on oxysterols intestinal layer damage mechanism is to be carried on, the consequent - but incomplete - prevention of oxysterols-dependent TJs alteration due to MMPs inhibition, avoided the loss of scaffold protein ZO-1, with possible significant recovery of intestinal monolayer integrity.

Derangement of intestinal epithelial cell monolayer by dietary cholesterol oxidation products

Deiana, Monica;Incani, Alessandra;Atzeri, Angela;Loi, Roberto;
2017-01-01

Abstract

The emerging role of the diet in the incidence of intestinal inflammatory diseases has stimulated research on the influence of eating habits with pro-inflammatory properties in inducing epithelial barrier disturbance. Cholesterol oxidation products, namely oxysterols, have been shown to promote and sustain oxidative/inflammatory reactions in human digestive tract. This work investigated in an in vitro model the potential ability of a combination of dietary oxysterols representative of a hyper-cholesterol diet to induce the loss of intestinal epithelial layer integrity. The components of the experimental mixture were the main oxysterols stemming from heat-induced cholesterol auto-oxidation, namely 7-ketocholesterol, 5α,6α-and 5β,6β-epoxycholesterol, 7α- and 7β-hydroxycholesterol. These compounds added to monolayers of differentiated CaCo-2 cells in combination or singularly, caused a time-dependent induction of matrix metalloproteinases (MMP)-2 and -9, also known as gelatinases. The hyperactivation of MMP-2 and -9 was found to be associated with decreased levels of the tight junctions zonula occludens-1 (ZO-1), occludin and Junction Adhesion Molecule-A (JAM-A). Together with such a protein loss, particularly evident for ZO-1, a net perturbation of spatial localization of the three tight junctions was observed. Cell monolayer pre-treatment with the selective inhibitor of MMPs ARP100 or polyphenol (-)-epicathechin, previously shown to inhibit NADPH oxidase in the same model system, demonstrated that the decrease of the three tight junction proteins was mainly a consequence of MMPs induction, which was in turn dependent on the pro-oxidant property of the oxysterols investigated. Although further investigation on oxysterols intestinal layer damage mechanism is to be carried on, the consequent - but incomplete - prevention of oxysterols-dependent TJs alteration due to MMPs inhibition, avoided the loss of scaffold protein ZO-1, with possible significant recovery of intestinal monolayer integrity.
Diet; Epithelial barrier; Intestinal inflammation; JAM-A; Metalloproteinases; Occludin; Oxysterols; ZO-1; Biochemistry; Physiology (medical)
File in questo prodotto:
File Dimensione Formato  
Deiana 2017 FRBM.pdf

Solo gestori archivio

Tipologia: versione editoriale
Dimensione 1.72 MB
Formato Adobe PDF
1.72 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/238073
Citazioni
  • ???jsp.display-item.citation.pmc??? 11
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 19
social impact