We propose a novel algorithm for decomposing general three-dimensional geometries into a small set of overlap-free height-field blocks, volumes enclosed by a flat base and a height-field surface defined with respect to this base. This decomposition is useful for fabrication methodologies such as 3-axis CNC milling, where a single milling pass can only carve a single height-field surface defined with respect to the machine tray but can also benefit other fabrication settings. Computing our desired decomposition requires solving a highly constrained discrete optimization problem, variants of which are known to be NP-hard. We effectively compute a high-quality decomposition by using a two-step process that leverages the unique characteristics of our setup. Specifically, we notice that if the height-field directions are constrained to the major axes, then we can always produce a valid decomposition starting from a suitable surface segmentation. Our method first produces a compact set of large, possibly overlapping, height-field blocks that jointly cover the model surface by recasting this discrete constrained optimization problem as an unconstrained optimization of a continuous function, which allows for an efficient solution. We then cast the computation of an overlap-free, final decomposition as an ordering problem on a graph and solve it via a combination of cycle elimination and topological sorting. The combined algorithm produces a compact set of height-field blocks that jointly describe the input model within a user given tolerance. We demonstrate our method on a range of inputs and showcase a number of real life models manufactured using our technique.
Axis-aligned height-field block decomposition of 3D shapes
Alessandro Muntoni;Riccardo Scateni;
2018-01-01
Abstract
We propose a novel algorithm for decomposing general three-dimensional geometries into a small set of overlap-free height-field blocks, volumes enclosed by a flat base and a height-field surface defined with respect to this base. This decomposition is useful for fabrication methodologies such as 3-axis CNC milling, where a single milling pass can only carve a single height-field surface defined with respect to the machine tray but can also benefit other fabrication settings. Computing our desired decomposition requires solving a highly constrained discrete optimization problem, variants of which are known to be NP-hard. We effectively compute a high-quality decomposition by using a two-step process that leverages the unique characteristics of our setup. Specifically, we notice that if the height-field directions are constrained to the major axes, then we can always produce a valid decomposition starting from a suitable surface segmentation. Our method first produces a compact set of large, possibly overlapping, height-field blocks that jointly cover the model surface by recasting this discrete constrained optimization problem as an unconstrained optimization of a continuous function, which allows for an efficient solution. We then cast the computation of an overlap-free, final decomposition as an ordering problem on a graph and solve it via a combination of cycle elimination and topological sorting. The combined algorithm produces a compact set of height-field blocks that jointly describe the input model within a user given tolerance. We demonstrate our method on a range of inputs and showcase a number of real life models manufactured using our technique.File | Dimensione | Formato | |
---|---|---|---|
a169-muntoni.pdf
Solo gestori archivio
Tipologia:
versione editoriale (VoR)
Dimensione
8.11 MB
Formato
Adobe PDF
|
8.11 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Muntoni2018AAH.lowres.pdf
accesso aperto
Tipologia:
versione post-print (AAM)
Dimensione
5.58 MB
Formato
Adobe PDF
|
5.58 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.