Deep convolutional neural networks (CNNs) obtain outstanding results in tasks that require human-level understanding of data, like image or speech recognition. However, their computational load is significant, motivating the development of CNN-specialized accelerators. This work presents NEURAghe, a flexible and efficient hardware/software solution for the acceleration of CNNs on Zynq SoCs. NEURAghe leverages the synergistic usage of Zynq ARM cores and of a powerful and flexible Convolution-Specific Processor deployed on the reconfigurable logic. The Convolution-Specific Processor embeds both a convolution engine and a programmable soft core, releasing the ARM processors from most of the supervision duties and allowing the accelerator to be controlled by software at an ultra-fine granularity. This methodology opens the way for cooperative heterogeneous computing: While the accelerator takes care of the bulk of the CNN workload, the ARM cores can seamlessly execute hard-to-accelerate parts of the computational graph, taking advantage of the NEON vector engines to further speed up computation. Through the companion NeuDNN SW stack, NEURAghe supports end-to-end CNN-based classification with a peak performance of 169GOps/s, and an energy efficiency of 17GOps/W. Thanks to our heterogeneous computing model, our platform improves upon the state-of-the-art, achieving a frame rate of 5.5 frames per second (fps) on the end-to-end execution of VGG-16 and 6.6fps on ResNet-18.

Neuraghe: exploiting CPU-FPGA synergies for efficient and flexible CNN inference acceleration on zynQ SoCs

Meloni, Paolo;Deriu, Gianfranco;Raffo, Luigi;
2018-01-01

Abstract

Deep convolutional neural networks (CNNs) obtain outstanding results in tasks that require human-level understanding of data, like image or speech recognition. However, their computational load is significant, motivating the development of CNN-specialized accelerators. This work presents NEURAghe, a flexible and efficient hardware/software solution for the acceleration of CNNs on Zynq SoCs. NEURAghe leverages the synergistic usage of Zynq ARM cores and of a powerful and flexible Convolution-Specific Processor deployed on the reconfigurable logic. The Convolution-Specific Processor embeds both a convolution engine and a programmable soft core, releasing the ARM processors from most of the supervision duties and allowing the accelerator to be controlled by software at an ultra-fine granularity. This methodology opens the way for cooperative heterogeneous computing: While the accelerator takes care of the bulk of the CNN workload, the ARM cores can seamlessly execute hard-to-accelerate parts of the computational graph, taking advantage of the NEON vector engines to further speed up computation. Through the companion NeuDNN SW stack, NEURAghe supports end-to-end CNN-based classification with a peak performance of 169GOps/s, and an energy efficiency of 17GOps/W. Thanks to our heterogeneous computing model, our platform improves upon the state-of-the-art, achieving a frame rate of 5.5 frames per second (fps) on the end-to-end execution of VGG-16 and 6.6fps on ResNet-18.
2018
Convolutional neural networks; FPGAS; HW accelerator; Image classification; Computer Science (all)
File in questo prodotto:
File Dimensione Formato  
a18-meloni.pdf

Solo gestori archivio

Descrizione: articolo
Tipologia: versione editoriale
Dimensione 2.58 MB
Formato Adobe PDF
2.58 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/262399
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 60
  • ???jsp.display-item.citation.isi??? 42
social impact