The persistence of the AIDS epidemic, and the life-long treatment required, indicate the constant need of novel HIV-1 inhibitors. In this scenario the HIV-1 Reverse Transcriptase (RT)-associated ribonuclease H (RNase H) function is a promising drug target. Here we report a series of compounds, developed on the 2-amino-6-(trifluoromethyl)nicotinic acid scaffold, studied as promising RNase H dual inhibitors. Among the 44 tested compounds, 34 inhibited HIV-1 RT-associated RNase H function in the low micromolar range, and seven of them showed also to inhibit viral replication in cell-based assays with a selectivity index up to 10. The most promising compound, 21, inhibited RNase H function with an IC50 of 14 µM and HIV-1 replication in cell-based assays with a selectivity index greater than 10. Mode of action studies revealed that compound 21 is an allosteric dual-site compound inhibiting both HIV-1 RT functions, blocking the polymerase function also in presence of mutations carried by circulating variants resistant to non-nucleoside inhibitors, and the RNase H function interacting with conserved regions within the RNase H domain. Proving compound 21 as a promising lead for the design of new allosteric RNase H inhibitors active against viral replication with not significant cytotoxic effects.

2-(Arylamino)-6-(trifluoromethyl)nicotinic Acid Derivatives: New HIV-1 RT Dual Inhibitors Active on Viral Replication

Corona, Angela
Primo
;
Onnis, Valentina
Secondo
;
Esposito, Francesca;Cheng, Yung-Chi;Tramontano, Enzo
Ultimo
2020-01-01

Abstract

The persistence of the AIDS epidemic, and the life-long treatment required, indicate the constant need of novel HIV-1 inhibitors. In this scenario the HIV-1 Reverse Transcriptase (RT)-associated ribonuclease H (RNase H) function is a promising drug target. Here we report a series of compounds, developed on the 2-amino-6-(trifluoromethyl)nicotinic acid scaffold, studied as promising RNase H dual inhibitors. Among the 44 tested compounds, 34 inhibited HIV-1 RT-associated RNase H function in the low micromolar range, and seven of them showed also to inhibit viral replication in cell-based assays with a selectivity index up to 10. The most promising compound, 21, inhibited RNase H function with an IC50 of 14 µM and HIV-1 replication in cell-based assays with a selectivity index greater than 10. Mode of action studies revealed that compound 21 is an allosteric dual-site compound inhibiting both HIV-1 RT functions, blocking the polymerase function also in presence of mutations carried by circulating variants resistant to non-nucleoside inhibitors, and the RNase H function interacting with conserved regions within the RNase H domain. Proving compound 21 as a promising lead for the design of new allosteric RNase H inhibitors active against viral replication with not significant cytotoxic effects.
2020
HIV-1 ribonuclease H; HIV-1 therapeutic agents; RT dual inhibitors; nicotinic acid amide; nicotinic acid esters
File in questo prodotto:
File Dimensione Formato  
2020 Corona et al.molecules-25-01338.pdf

accesso aperto

Descrizione: articolo principale
Tipologia: versione editoriale (VoR)
Dimensione 1.28 MB
Formato Adobe PDF
1.28 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/285899
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 13
social impact