Morra is a 3,000-years-old hand game of prediction and numbers. The two players reveal their hand simultaneously, presenting a number of fingers between 1 and 5, while calling out a number between 2 and 10. Any player who successfully guesses the summation of fingers revealed by both players scores a point. While the game is extremely fast-paced, making it very difficult for players to achieve a conscious control of their game strategies, expert players regularly outperform non-experts, possibly with strategies residing out of conscious control. In this study, we used Morra as a naturalistic setting to investigate the necessity of attentive control in generation of sequence of items and the ability to proceduralize random number generation, which are both a crucial defensive strategy in Morra and a well-known empirical procedure to test the central executive capacity within the working memory model. We recorded the sequence of numbers generated by expert players in a Morra tournament in Sardinia (Italy) and by undergraduate students enrolled in a course-based research experience (CRE) course at Lawrence Technological University in the United States. Number sequences generated by non-expert and expert players both while playing Morra and in a random number generation task (RNGT) were compared in terms of randomness scores. Results indicate that expert players of Morra largely outperformed non-experts in the randomness scores only within Morra games, whereas in RNGT the two groups were very similar. Importantly, survey data acquired after the games indicate that expert players have very poor conscious recall of their number generation strategies used during the Morra game. Our results indicate that the ability of generating random sequences can be proceduralized and do not necessarily require attentive control. Results are discussed in the framework of the dual processing theory and its automatic-parallel-fast vs.controlled-sequential-slow polarities.

The Morra game as a naturalistic test bed for investigating automatic and voluntary processes in random sequence generation

Carla Meloni
Secondo
Data Curation
;
Rachele Fanari
Ultimo
Writing – Review & Editing
2020-01-01

Abstract

Morra is a 3,000-years-old hand game of prediction and numbers. The two players reveal their hand simultaneously, presenting a number of fingers between 1 and 5, while calling out a number between 2 and 10. Any player who successfully guesses the summation of fingers revealed by both players scores a point. While the game is extremely fast-paced, making it very difficult for players to achieve a conscious control of their game strategies, expert players regularly outperform non-experts, possibly with strategies residing out of conscious control. In this study, we used Morra as a naturalistic setting to investigate the necessity of attentive control in generation of sequence of items and the ability to proceduralize random number generation, which are both a crucial defensive strategy in Morra and a well-known empirical procedure to test the central executive capacity within the working memory model. We recorded the sequence of numbers generated by expert players in a Morra tournament in Sardinia (Italy) and by undergraduate students enrolled in a course-based research experience (CRE) course at Lawrence Technological University in the United States. Number sequences generated by non-expert and expert players both while playing Morra and in a random number generation task (RNGT) were compared in terms of randomness scores. Results indicate that expert players of Morra largely outperformed non-experts in the randomness scores only within Morra games, whereas in RNGT the two groups were very similar. Importantly, survey data acquired after the games indicate that expert players have very poor conscious recall of their number generation strategies used during the Morra game. Our results indicate that the ability of generating random sequences can be proceduralized and do not necessarily require attentive control. Results are discussed in the framework of the dual processing theory and its automatic-parallel-fast vs.controlled-sequential-slow polarities.
2020
Random number generation; Central executive; Automatic processing; Proceduralization; Hand game; Dual processing theory; Course-based research experience
File in questo prodotto:
File Dimensione Formato  
fpsyg-11-551126.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: versione editoriale
Dimensione 662.25 kB
Formato Adobe PDF
662.25 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/297417
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact