Keyword spotting (KWS) utilities have become increasingly popular on a wide range of mobile and home devices, representing a prolific application field for Convolutional Neural Networks (CNNs), which are commonly exploited to perform keyword classification. Addressing the challenges of targeting such resource-constrained platforms, requires a careful definition of the CNN architecture and the overall system implementation. These reasons have led to a growing need for design and optimization flows, able to intrinsically take into account the system's performance when ported on the target platform. In this work, we present a design methodology based on Neural Architecture Search, exploited to combine the exploration of the optimal network topology, the audio pre-processing scheme, and the data quantization policy. The proposed design flow includes target-awareness in the exploration loop, comparing the different design alternatives according to a model-based pre-evaluation of metrics like execution latency, memory footprint, and energy consumption, evaluated considering the application's execution on the target processing platform. We have tested our design flow to obtain target-specific CNNs for a resource-constrained commercial platform, the ST SensorTile. Considering two different application scenarios, enabling the comparison with the state-of-the-art of efficient CNN-based models for KWS, we have obtained up to a 1.8% accuracy improvement and a 40% footprint reduction in the most favorable case.

Target-Aware Neural Architecture Search and Deployment for Keyword Spotting

Busia P.;Deriu G.;Raffo L.;Meloni P.
2022-01-01

Abstract

Keyword spotting (KWS) utilities have become increasingly popular on a wide range of mobile and home devices, representing a prolific application field for Convolutional Neural Networks (CNNs), which are commonly exploited to perform keyword classification. Addressing the challenges of targeting such resource-constrained platforms, requires a careful definition of the CNN architecture and the overall system implementation. These reasons have led to a growing need for design and optimization flows, able to intrinsically take into account the system's performance when ported on the target platform. In this work, we present a design methodology based on Neural Architecture Search, exploited to combine the exploration of the optimal network topology, the audio pre-processing scheme, and the data quantization policy. The proposed design flow includes target-awareness in the exploration loop, comparing the different design alternatives according to a model-based pre-evaluation of metrics like execution latency, memory footprint, and energy consumption, evaluated considering the application's execution on the target processing platform. We have tested our design flow to obtain target-specific CNNs for a resource-constrained commercial platform, the ST SensorTile. Considering two different application scenarios, enabling the comparison with the state-of-the-art of efficient CNN-based models for KWS, we have obtained up to a 1.8% accuracy improvement and a 40% footprint reduction in the most favorable case.
2022
Keyword spotting; neural networks; neural architecture search
File in questo prodotto:
File Dimensione Formato  
Target-Aware_Neural_Architecture_Search_and_Deployment_for_Keyword_Spotting.pdf

accesso aperto

Descrizione: articolo online
Tipologia: versione editoriale (VoR)
Dimensione 1.84 MB
Formato Adobe PDF
1.84 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/345336
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact