The abnormal deposition of protein in the brain is the central factor in neurodegenerative disorders (NDs). These detrimental aggregates, stemming from the misfolding and subsequent irregular aggregation of α-synuclein protein, are primarily accountable for conditions such as Parkinson’s disease, Alzheimer’s disease, and dementia. Two-photon-excited (TPE) probes are a promising tool for the early-stage diagnosis of these pathologies as they provide accurate spatial resolution, minimal intrusion, and the ability for prolonged observation. To identify compounds with the potential to function as diagnostic probes using two-photon techniques, we explore three distinct categories of compounds: Hydroxyl azobenzene (AZO-OH); Dicyano-vinyl bithiophene (DCVBT); and Tetra-amino phthalocyanine (PcZnNH2). The molecules were structurally and optically characterized using a multi-technique approach via UV-vis absorption, Raman spectroscopy, three-dimensional fluorescence mapping (PLE), time-resolved photoluminescence (TRPL), and pump and probe measurements. Furthermore, quantum chemical and molecular docking calculations were performed to provide insights into the photophysical properties of the compounds as well as to assess their affinity with the α-synuclein protein. This innovative approach seeks to enhance the accuracy of in vivo probing, contributing to early Parkinson’s disease (PD) detection and ultimately allowing for targeted intervention strategies.

Promising Molecular Architectures for Two-Photon Probes in the Diagnosis of α-Synuclein Aggregates

Porcu, Stefania
Primo
;
Corpino, Riccardo;Carbonaro, Carlo Maria;Ricci, Pier Carlo;Vargiu, Attilio Vittorio;Sanna, Anna Laura;Sforazzini, Giuseppe
;
Chiriu, Daniele
Ultimo
Supervision
2024-01-01

Abstract

The abnormal deposition of protein in the brain is the central factor in neurodegenerative disorders (NDs). These detrimental aggregates, stemming from the misfolding and subsequent irregular aggregation of α-synuclein protein, are primarily accountable for conditions such as Parkinson’s disease, Alzheimer’s disease, and dementia. Two-photon-excited (TPE) probes are a promising tool for the early-stage diagnosis of these pathologies as they provide accurate spatial resolution, minimal intrusion, and the ability for prolonged observation. To identify compounds with the potential to function as diagnostic probes using two-photon techniques, we explore three distinct categories of compounds: Hydroxyl azobenzene (AZO-OH); Dicyano-vinyl bithiophene (DCVBT); and Tetra-amino phthalocyanine (PcZnNH2). The molecules were structurally and optically characterized using a multi-technique approach via UV-vis absorption, Raman spectroscopy, three-dimensional fluorescence mapping (PLE), time-resolved photoluminescence (TRPL), and pump and probe measurements. Furthermore, quantum chemical and molecular docking calculations were performed to provide insights into the photophysical properties of the compounds as well as to assess their affinity with the α-synuclein protein. This innovative approach seeks to enhance the accuracy of in vivo probing, contributing to early Parkinson’s disease (PD) detection and ultimately allowing for targeted intervention strategies.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/402083
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact