We advance on the conversion of bipartite quantum states via local operations and classical communication for infinite-dimensional systems. We introduce δ-LOCC convertibility based on the observation that any pure state can be approximated by a state with finite-support Schmidt coefficients. We show that δ-LOCC convertibility of bipartite states is fully characterized by a majorization relation between the sequences of squared Schmidt coefficients, providing a novel extension of Nielsen’s theorem for infinite-dimensional systems. Hence, our definition is equivalent to the one of ϵ-LOCC convertibility [Quantum Inf. Comput. 8, 0030 (2008)], but deals with states having finitely supported sequences of Schmidt coefficients. Additionally, we discuss the notions of optimal common resource and optimal common product in this scenario. The optimal common product always exists, whereas the optimal common resource depends on the existence of a common resource. This highlights a distinction between the resource-theoretic aspects of finite versus infinite-dimensional systems. Our results rely on the order-theoretic properties of majorization for infinite sequences, applicable beyond the LOCC convertibility problem.

LOCC convertibility of entangled states in infinite-dimensional systems

Freytes, Hector;Giuntini, Roberto;Sergioli, Giuseppe;Bosyk, Gustavo M
2024-01-01

Abstract

We advance on the conversion of bipartite quantum states via local operations and classical communication for infinite-dimensional systems. We introduce δ-LOCC convertibility based on the observation that any pure state can be approximated by a state with finite-support Schmidt coefficients. We show that δ-LOCC convertibility of bipartite states is fully characterized by a majorization relation between the sequences of squared Schmidt coefficients, providing a novel extension of Nielsen’s theorem for infinite-dimensional systems. Hence, our definition is equivalent to the one of ϵ-LOCC convertibility [Quantum Inf. Comput. 8, 0030 (2008)], but deals with states having finitely supported sequences of Schmidt coefficients. Additionally, we discuss the notions of optimal common resource and optimal common product in this scenario. The optimal common product always exists, whereas the optimal common resource depends on the existence of a common resource. This highlights a distinction between the resource-theoretic aspects of finite versus infinite-dimensional systems. Our results rely on the order-theoretic properties of majorization for infinite sequences, applicable beyond the LOCC convertibility problem.
2024
Common resources; Entanglement; Infinite dimension; LOCC convertibility; Majorization lattice
File in questo prodotto:
File Dimensione Formato  
81. LOCC convertibility.pdf

accesso aperto

Tipologia: versione pre-print
Dimensione 461.04 kB
Formato Adobe PDF
461.04 kB Adobe PDF Visualizza/Apri
Massri_2024_New_J._Phys._26_063016.pdf

accesso aperto

Tipologia: versione editoriale (VoR)
Dimensione 523.74 kB
Formato Adobe PDF
523.74 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/403663
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact