Background: Malaria is a critical and potentially fatal disease caused by the Plasmodium parasite and is responsible for more than 600,000 deaths globally. Early and accurate detection of malaria parasites is crucial for effective treatment, yet conventional microscopy faces limitations in variability and efficiency. Methods: We propose a novel computer-aided detection framework based on deep learning and attention mechanisms, extending the YOLO-SPAM and YOLO-PAM models. Our approach facilitates the detection and classification of malaria parasites across all infection stages and supports multi-species identification. Results: The framework was evaluated on three publicly available datasets, demonstrating high accuracy in detecting four distinct malaria species and their life stages. Comparative analysis against state-of-the-art methodologies indicates significant improvements in both detection rates and diagnostic utility. Conclusion: This study presents a robust solution for automated malaria detection, offering valuable support for pathologists and enhancing diagnostic practices in real-world scenarios.

A deep architecture based on attention mechanisms for effective end-to-end detection of early and mature malaria parasites in a realistic scenario

Zedda, Luca;Loddo, Andrea;Di Ruberto, Cecilia
2025-01-01

Abstract

Background: Malaria is a critical and potentially fatal disease caused by the Plasmodium parasite and is responsible for more than 600,000 deaths globally. Early and accurate detection of malaria parasites is crucial for effective treatment, yet conventional microscopy faces limitations in variability and efficiency. Methods: We propose a novel computer-aided detection framework based on deep learning and attention mechanisms, extending the YOLO-SPAM and YOLO-PAM models. Our approach facilitates the detection and classification of malaria parasites across all infection stages and supports multi-species identification. Results: The framework was evaluated on three publicly available datasets, demonstrating high accuracy in detecting four distinct malaria species and their life stages. Comparative analysis against state-of-the-art methodologies indicates significant improvements in both detection rates and diagnostic utility. Conclusion: This study presents a robust solution for automated malaria detection, offering valuable support for pathologists and enhancing diagnostic practices in real-world scenarios.
2025
Computer vision; Deep learning; Early malaria diagnosis; Image processing; Malaria parasites detection
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S001048252500054X-main.pdf

accesso aperto

Tipologia: versione editoriale (VoR)
Dimensione 4.54 MB
Formato Adobe PDF
4.54 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/436365
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact