The development of epilepsy monitoring solutions suitable for everyday use is a very challenging task, where different constraints should be combined, resulting from the required accuracy standards, the unobtrusiveness of the monitoring device, and the efficiency of real-time operation. Considering the time-varying nature of the electroencephalography signal (EEG), Spiking Neural Networks (SNNs) represent a promising solution to model the evolution of the brain state based on the history of the previously processed signal. This work proposes an extremely lightweight SNN-based seizure detection solution, utilizing a simple encoding scheme to ensure high levels of sparsity. Despite the reduced complexity, the model provides a detection performance comparable with the state-of-the-art SNN-based approaches on the evaluated data from the CHB-MIT dataset, reaching a 96% area under the curve (AUC) and allowing 99.3% average accuracy, with the detection of 100% of the examined seizure events and a false alarm rate of 0.3 false positives per hour. The suitability for real-time inference execution on wearable monitoring devices was assessed on SYNtzulu, demonstrating 0.5 μs inference time with 4.55 nJ energy consumption.
Wearable Epilepsy Seizure Detection on FPGA with Spiking Neural Networks
Busia, Paola
;Leone, Gianluca;Matticola, Andrea;Raffo, Luigi;Meloni, Paolo
2025-01-01
Abstract
The development of epilepsy monitoring solutions suitable for everyday use is a very challenging task, where different constraints should be combined, resulting from the required accuracy standards, the unobtrusiveness of the monitoring device, and the efficiency of real-time operation. Considering the time-varying nature of the electroencephalography signal (EEG), Spiking Neural Networks (SNNs) represent a promising solution to model the evolution of the brain state based on the history of the previously processed signal. This work proposes an extremely lightweight SNN-based seizure detection solution, utilizing a simple encoding scheme to ensure high levels of sparsity. Despite the reduced complexity, the model provides a detection performance comparable with the state-of-the-art SNN-based approaches on the evaluated data from the CHB-MIT dataset, reaching a 96% area under the curve (AUC) and allowing 99.3% average accuracy, with the detection of 100% of the examined seizure events and a false alarm rate of 0.3 false positives per hour. The suitability for real-time inference execution on wearable monitoring devices was assessed on SYNtzulu, demonstrating 0.5 μs inference time with 4.55 nJ energy consumption.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


