Fractionation of the bioactive dichloromethane extract from the aerial parts of Stachys glutinosa led to the isolation of four flavones, xanthomicrol (1), sideritoflavone (2), 8-methoxycirsilineol (3), and eupatilin (4), along with two neo-clerodane diterpenes, roseostachenone (8) and a new compound, 3α,4α-epoxyroseostachenol (7). In order to study structure-activity relationships, two methoxyflavones [5-demethyltangeretin (5) and tangeretin (6)] were synthesized by the methoxylation of xanthomicrol. The isolated compounds (1-4, 7, and 8) as well as the xanthomicrol semisynthetic derivatives (5 and 6) were evaluated for their binding affinity to the μ and δ opioid receptors. Xanthomicrol was the most potent binder to both μ and δ receptors, with a Ki value of 0.83 and 3.6 μM, respectively. Xanthomicrol administered intraperitoneally in mice at a dose of 80 mg/kg significantly reduced morphine-induced antinociception in the tail flick test. Our results suggested that xanthomicrol is a μ opioid receptor antagonist. Docking experiments were carried out to acquire a deeper understanding about important structural aspects of binding of xanthomicrol. In summary, these data suggest that xanthomicrol is a valuable structure for further development into a potential μ opioid receptor antagonist.
Methoxyflavones from Stachys glutinosa with binding affinity to opioid receptors: in silico, in vitro, and in vivo studies
FLORIS, COSTANTINO;CABONI, PIERLUIGI;MACCIONI, ELIAS;DISTINTO, SIMONA;COTTIGLIA, FILIPPO
2015-01-01
Abstract
Fractionation of the bioactive dichloromethane extract from the aerial parts of Stachys glutinosa led to the isolation of four flavones, xanthomicrol (1), sideritoflavone (2), 8-methoxycirsilineol (3), and eupatilin (4), along with two neo-clerodane diterpenes, roseostachenone (8) and a new compound, 3α,4α-epoxyroseostachenol (7). In order to study structure-activity relationships, two methoxyflavones [5-demethyltangeretin (5) and tangeretin (6)] were synthesized by the methoxylation of xanthomicrol. The isolated compounds (1-4, 7, and 8) as well as the xanthomicrol semisynthetic derivatives (5 and 6) were evaluated for their binding affinity to the μ and δ opioid receptors. Xanthomicrol was the most potent binder to both μ and δ receptors, with a Ki value of 0.83 and 3.6 μM, respectively. Xanthomicrol administered intraperitoneally in mice at a dose of 80 mg/kg significantly reduced morphine-induced antinociception in the tail flick test. Our results suggested that xanthomicrol is a μ opioid receptor antagonist. Docking experiments were carried out to acquire a deeper understanding about important structural aspects of binding of xanthomicrol. In summary, these data suggest that xanthomicrol is a valuable structure for further development into a potential μ opioid receptor antagonist.File | Dimensione | Formato | |
---|---|---|---|
stachys glutinosa.pdf
Solo gestori archivio
Tipologia:
versione editoriale (VoR)
Dimensione
4.55 MB
Formato
Adobe PDF
|
4.55 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.