The Fiedler vector of a graph is the eigenvector corresponding to the algebraic connectivity, which is the second-smallest eigenvalue (counting multiple eigenvalues separately) of the corresponding Laplacian matrix. We propose a continuous-time distributed control protocol to drive the value of the state variables of a network toward the Fiedler vector, up to a scale factor. Our protocol is unbiased and robust with respect to the initial network state, but the knowledge of the algebraic connectivity is required. By means of the proposed control law, we design a local state feedback that achieves desynchronization on arbitrary undirected connected networks of diffusively coupled harmonic oscillators. We provide numerical simulations to corroborate the theoretical results.
Distributed Fiedler Vector Estimation with Application to Desynchronization of Harmonic Oscillator Networks
Deplano D.;Franceschelli M.
;Giua A.;
2021-01-01
Abstract
The Fiedler vector of a graph is the eigenvector corresponding to the algebraic connectivity, which is the second-smallest eigenvalue (counting multiple eigenvalues separately) of the corresponding Laplacian matrix. We propose a continuous-time distributed control protocol to drive the value of the state variables of a network toward the Fiedler vector, up to a scale factor. Our protocol is unbiased and robust with respect to the initial network state, but the knowledge of the algebraic connectivity is required. By means of the proposed control law, we design a local state feedback that achieves desynchronization on arbitrary undirected connected networks of diffusively coupled harmonic oscillators. We provide numerical simulations to corroborate the theoretical results.File | Dimensione | Formato | |
---|---|---|---|
21lcss.pdf
Solo gestori archivio
Descrizione: VoR
Tipologia:
versione editoriale (VoR)
Dimensione
621.21 kB
Formato
Adobe PDF
|
621.21 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
2020_L-CSS_IRIS.pdf
accesso aperto
Descrizione: AAM
Tipologia:
versione post-print (AAM)
Dimensione
685.61 kB
Formato
Adobe PDF
|
685.61 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.