Targeting ribonuclease H (RNase H) has emerged as a highly promising strategy for treating HIV-1. In this study, a series of novel 3-hydrazonoindolin-2-one derivatives were designed and synthesized as potential inhibitors of HIV-1 RNase H. Notably, several of these derivatives displayed micromolar inhibitory activity. Among the compounds examined, the hit compound demonstrated potent inhibition of HIV-1 RNase H, boasting a Ki value of 2.31 μM. Additionally, the most potent compound of this general structure exhibited remarkable inhibitory activity, with Ki values of 0.55 μM. Through docking studies, the key interactions of this ligand within the active site of RNase H were uncovered. This novel chemical structure can be regarded as a prospective scaffold for the future development of RNase H inhibitors.

Design, Synthesis and Biological Evaluation of 3-Hydrazonoindolin-2-one Derivatives as Novel HIV-1 RNase H Inhibitors

Corona, Angela;Dettori, Laura;Tramontano, Enzo;
2025-01-01

Abstract

Targeting ribonuclease H (RNase H) has emerged as a highly promising strategy for treating HIV-1. In this study, a series of novel 3-hydrazonoindolin-2-one derivatives were designed and synthesized as potential inhibitors of HIV-1 RNase H. Notably, several of these derivatives displayed micromolar inhibitory activity. Among the compounds examined, the hit compound demonstrated potent inhibition of HIV-1 RNase H, boasting a Ki value of 2.31 μM. Additionally, the most potent compound of this general structure exhibited remarkable inhibitory activity, with Ki values of 0.55 μM. Through docking studies, the key interactions of this ligand within the active site of RNase H were uncovered. This novel chemical structure can be regarded as a prospective scaffold for the future development of RNase H inhibitors.
2025
AIDS; HIV; 3-hydrazonoindolin-2-one; RNase H
File in questo prodotto:
File Dimensione Formato  
2025_RNase H Fudan molecules-30-01868.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: versione editoriale (VoR)
Dimensione 2.98 MB
Formato Adobe PDF
2.98 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/442465
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact