The HIV-1 Reverse Transcriptase (RT) is a validated and deeply explored biological target for the treatment of AIDS. However, only drugs targeting the RT-associated DNA polymerase (DP) function have been approved for clinical use. We designed and synthesised a new generation of HIV-1 RT inhibitors, based on the (3Z)-3-(2-[4-(aryl)-1,3-thiazol-2-yl]hydrazin-1-ylidene)-2,3-dihydro-1H-indol-2-one scaffold. These compounds are active towards both RT-associated functions, DNA polymerase and ribonuclease H. The structure, biological activity and mode of action of the new derivatives have been investigated. In particular, the nature of the aromatic group in the position 4 of the thiazole ring plays a key role in the modulation of the activity towards the two RT-associated functions.

(3Z)-3-(2-[4-(aryl)-1,3-thiazol-2-yl]hydrazin-1-ylidene)-2,3-dihydro- 1H -indol-2-one derivatives as dual inhibitors of HIV-1 reverse transcriptase

MELEDDU, RITA;DISTINTO, SIMONA;CORONA, ANGELA;BIANCO, GIULIA;CANNAS, VALERIA;ESPOSITO, FRANCESCA;COTTIGLIA, FILIPPO;TRAMONTANO, ENZO;MACCIONI, ELIAS
Ultimo
2015-01-01

Abstract

The HIV-1 Reverse Transcriptase (RT) is a validated and deeply explored biological target for the treatment of AIDS. However, only drugs targeting the RT-associated DNA polymerase (DP) function have been approved for clinical use. We designed and synthesised a new generation of HIV-1 RT inhibitors, based on the (3Z)-3-(2-[4-(aryl)-1,3-thiazol-2-yl]hydrazin-1-ylidene)-2,3-dihydro-1H-indol-2-one scaffold. These compounds are active towards both RT-associated functions, DNA polymerase and ribonuclease H. The structure, biological activity and mode of action of the new derivatives have been investigated. In particular, the nature of the aromatic group in the position 4 of the thiazole ring plays a key role in the modulation of the activity towards the two RT-associated functions.
Antiviral agents; HIV-1 RT dual inhibitors; HIV-1; Molecular modelling; RNase H; (3Z)-3-(2-[4-(aryl)-1,3-thiazol-2-yl]hydrazin-1-ylidene)-2,3-dihydro-1H-indol-2-ones
File in questo prodotto:
File Dimensione Formato  
Meleddu et al Eur J Med Chem 2015-EJMECH-D-14-01857-SD.pdf

accesso aperto

Tipologia: versione pre-print
Dimensione 769.22 kB
Formato Adobe PDF
769.22 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/107215
Citazioni
  • ???jsp.display-item.citation.pmc??? 17
  • Scopus 43
  • ???jsp.display-item.citation.isi??? 42
social impact